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We show that every orthoalgebra (difference orthopose0 uniquely determines a 
difference orthoalgebraic structure. We give examples of posets on which there 
exist more than one difference operation. In spite of that, every finite chain is a 
uniquely determined difference poset. On a difference poset there need not exist 
any orthoalgebraic operation, but the category of difference orthoposets is 
isomorphic with the category of orthoalgebras. But a difference poser which is 
also an orthoposet need not be a difference orthoposet. Moreover, there exist 
complete lattices on which there does not exist any difference operation. Finally, 
we show that difference operations and orthoalgebraic operations need not be 
extendable on a MacNeille completion of the base poset. 

1. PRELIMINARIES 

Let us start  with the basic no t ions  of  our  considerat ions.  
Let a b inary  relat ion < on  a nonvo id  set P be a part ial  ordering; then 

a pair  (P, < )  is called a poset. A chain is a poset in which every two 
elements a, b are comparable, i.e. a < b or b -< a. 

A structure (P, < ,  _L, 0, 1) is called an  orthoposet if (P, < )  is a poset 
and  the u n a r y  opera t ion  l :  a ~ P  ~ a •  is such that  for every x, y e P :  

(opi) (x•  • = x. 
(opii)  x < y implies y i  < x • 

(opiii) x v x • = 1. 
(opiv) 0 -L = 1. 

A n  or thoposet  P is called an  orthomodular poset if x v y exists for any  
pair  x, y E P  such that  x < y•  and  the o r thomodu la r  law is valid in P, i.e., 
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y = x v (x x A y) for every x, y e P  such that x < y. An orthomodular  poset 
which is a lattice is called an orthornodular lattice. 

We say that elements x, y of  an orthoposet P are orthogonal if x < y J-. 
The set M _c p is said to be orthogonal if every two different elements of  
M are orthogonal. 

In what follows, for a partially defined operation " O "  on a nonempty 
set P and any a, b, c e P  we write aOb  = c i f a O b  is defined and c = aOb. 

A structure (P, ~ ,  0, 1) is called an orthoalgebra if 0, 1 are two 
distinguished elements and ~ is a partially defined binary operation on P 
which satisfies the following conditions for any a, b, ceP:  

(oai) b ~ a = a t~ b if a 0) b is defined. 
(oaii) (a 09 b) ~ c = a 0) (b ~ c) if b ~ c and a ~ (b t~ c) are defined. 

(oaiii) For  every a e P  there exists a unique b e P  such that a ~ b  = 1. 
(oaiv) I f  a t~ a is defined, then a = 0. 

Orthoalgebras are algebraic systems that generalize Boolean algebras 
and orthomodular  posets [see Randall and Foulis (1981) and Foulis and 
Pt~ik (n.d.) and references therein]. 

Further generalizations for the abstract model of  the quantum logic 
approach to the foundation of  quantum mechanics are difference posets 
(K6pka  and Chovanec, n.d.; Navara and Pt~ik, n.d.; Foulis and Pt~ik, n.d.). 

A structure (P, <,  O,  0, 1) is called a difference poset (abbreviated 
D-poset or DP) if (P, < )  is a poset with a least element 0 and a greatest 
element 1 and with a partially defined binary operation • such that for any 
a, b, c e P  the following are satisfied: 

(dpi) b O a is defined iff a < b. 
(dpii) a @ 0 = a. 

(dpiii) If  a -< b < c, then c O b < c @ a and (c O a) O (c O b) = b G a. 

Typical examples of  difference posets are orthomodular  lattices and 
orthoalgebras [see Navara and Pt~ik (n.d.) and K6pka and Chovanec (n.d.) 
for further examples]. 

A structure (P, < ,  • @, 0, 1) is called a difference orthoposet (abbrevi- 
ated D-orthoposet or DOP) if the following conditions are satisfied: 

(dopi) (P, -<, G,  0, 1) is a D-poset. 
(dopii) (P, <,  • 0, 1) is an orthoposet. 

(dopiii) a • = 1 G a  for every a~P. 

2. E X A M P L E S  

The easy proof  of  the following lemma is left to the reader. 

Lemma 2.1. Let (P, -<,  O, 0, 1) be a D-poset. Then the following 
conditions are satisfied for any a, b, c~P: 
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(i) 
(ii) 

(iii) 
(iv) 
(v) 

(vi) 
(viii) 
(viii) 

(ix) 
(x) 

(xi) 

b (3 a < b and b (3 (b (3 a) = a for  every a < b. 
a ~ {0, 1 } implies 1 (3 a q~ {0, 1 }. 
0 < a  < b  < 1 implies 0 <  l o b  < 1 ( 3 a  < 1 and  O < b ( 3 a  <b. 
b (3 a = 0 if  and  only if a = b. 
b (3 a = b implies a = 0. 
c (3 a = c (3 b implies a = b. 
a (3 c = b O c implies a = b. 
0 < a < b < c < l  i m p l i e s 0 < c ( 3 b < c O a < c < l .  
a < b  < c implies b@a <-c(3a and ( c O a ) e ( b ( 3 a )  = c O b .  
b < c @ a implies (c (3 a) O b = (c (3 b) e a. 
a < c (3 b implies b -< c (3 a. 

Corollary 2.2. Every  finite chain is a uniquely defined D-poset .  

Proof. Let  a poset  P be a finite chain: 0 < x l < x 2 < . . . < x n _ i  
< x ,  = 1. Then,  in view of  L e m m a  1.1, for  every i, k~{1 ,  2 . . . . .  n} and  
any  difference opera t ion  (3 on P we have: 

xk (30  = xk 

Xk ~)  X k = 0  

xk (3 xi is no t  defined for  every i > k 

Xk (3 Xi = Xk_ ~ for  every i < k 

The  last is obvious  f rom the fact tha t  0 < xl < x2 < " "  < Xk_ 1< Xk < 1 
implies tha t  

O~-- Xk ( 3 X  k < Xk ( ~ X k _  1 ~ " " " <~ Xk ( ~ X 2  ~ X k ( ~ X  1 < Xk ( 3 0 =  X k 

In  wha t  follows we shall consider  three examples  o f  posets  (Figs. 1 -  3). 

Example 2.3. Figure  1 shows an o r thopose t  P which does not  become  
a D - o r t h o p o s e t  by  put t ing  1 ( 3 x  = x -~ for  every x s P .  

Suppose  the cont rary .  Then  in view o f  L e m m a  1,1 we have  b •  a 
-<b  • and bJ-(3a~{O,l ,b• hence b •  Similarly a-C(3b=b. 

1 

(t b 

0 
Fig. 1 
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1 

a b 

0 
Fig. 2 

Furthermore, by (dpiii) b < a  • -< 1 implies (1 b b )  b ( 1  b a  • = a •  It 
follows that b ~- b a = a • b b and hence a = b; this is a contradiction. 

In spite of this fact, if we put I b a = b • 1 b b = a • 1 b a • = b, and 
l b b L = a ,  then the poset P in Fig. 1 becomes a D-poset in which 
a •  and b i b a = a .  Moreover x b O = x  and x b x  = 0  for every 
x~P. Hence this structure (P, ~ ,  _L, b ,  0, 1) satisfies the conditions (dopO 
and (dopii) but not (dopiii) of D-orthoposets. 

Example 2.4. For the poset P in Fig, 3 there does not exist any 
difference operation b with the properties (dpi)-(dpiii) of D-posets. 

Suppose the contrary. Then in view of Lemma 2.1 we have 

O < b < e < c < l  implies O < c b e < c b b < c < l  

and 

O < a < e < c < l  implies O < c b e < c @ a < c < l  

It follows that c b a  = c e b  =e .  Thus by property (x) of  Lemma 2.1 we 
have 

0 = ( c b a )  b e  = ( c b e )  b a  

0 = ( c b b )  b e  = ( c b e )  b b  

Hence c b e  = a = b, which is a contradiction. 

Example 2.5. For the poser P in Fig. 2 there exist four different 
operations b~ such that (P, <,  b~, 0, 1), i t { l ,  2, 3, 4}, is a D-poset. 

1 

0 

Fig. 3 
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Proof. Evidently if a difference operation 8 on a poset P exists, then 
we have 

x 8 x = O, x 0 0 = x for every x e P 

and x 8 y  is not defined for every x, y~P with x < y .  Thus, it remains to 
choose 

cGa,  cSb~{a ,  

dOa,  d~be{a ,  

18a,  l~b~{c ,  

1 8c ,  1 ~de{a ,  

b} with c S a ~ c S b  

b} with d S a  ~ d S b  

d} with 1 8 a r  

b} with 1 8 c v ~ l S d  

and such that [in view of  (xi), Lemma 2.1] 

1 8 a = c i m p l i e s  1 8 c = a  

1 8 a = d implies 1 8 d = b 

It is clear that we have four different possibilities for operation 8 .  In all 
these possibilities the following conditions are satisfied: 

O < b  < c  < 1 implies O< 1 8 c  < 1 8 b  < 1 and (1 8 b )  8 ( 1  8 c )  = c O b  

O < a < d < l  implies O< 1 8 d <  1 8 a <  1 a n d ( 1 8 a ) 8 ( 1 8 d ) = d S a  

O < a  < c  < 1 implies O< 1 8 e  < 1 8 a  < 1 and (1 8 a ) 8 ( 1 8 c )  = c S a  

O < b < d < l  i m p l i e s O < l S d < l S b < l  a n d ( 1 8 b )  8 ( 1 8 d ) = d S b  

3. ORTHOALGEBRAS AND D-ORTHOPOSETS AS 
D-ORTHOALGEBRAS 

Connections between orthoalgebras and orthomodular posets (lattices) 
have been studied by Navara and Pt~k (n.d.). Using their results, we are 
going to show that the category of orthoalgebras is isomorphic to the cat- 
egory of  D-orthoposets and each of  them uniquely determines a D-orthoal- 
gebraic structure on the base set. From these facts we obtain necessary and 
sufficient conditions for difference operations e and orthoalgebraic opera- 
tions ~ to be extendable to the MacNeille completion of the base poset. 

Lemma 3.1. Let (P, ~ ,  0 ,  0, 1) be a D-poser. The following condi- 
tions are equivalent: 

(i) For every bsP: 1 0 b  <- b implies b = 1. 
(ii) For every a~P: a <- 1 e a  implies a = 0. 

(iii) (P, -<, • 8 ,  0, 1) with orthocomplementation _L: p_+p defined 
by a • = 1 8 a  is a D-orthoposet. 
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Proof. (i) ~-  (ii): In view of  (dpiii), for every a e P  we have a -< 1 G a  
iff 1 8 ( 1 8 a ) < l S a ,  and we use the fact that 1 8 a = l  iff a = 0  by 
Lemma 2.1. 

(i) =~ (iii): For  any a e P  we have ( a ' )  • = 1 8 ( 1  8 a )  = a. If  a, bEP 
with a ~ b, then by (dpiii) we have 1 8 b  < 1 8 a ,  hence b • -< a • More- 
over, for any a ~P  and every b e P  such that a < b and a • < b we have 
! S b < l S a = a  •  and thus the supremum a v a  •  Finally, 
0 •  1 8 0 =  1. 

(iii) =~ (i): This is obvious. 

A D-poset (P, <,  8 ,  0, 1) with a -< 1 8  a =:- a = 0 for every a z P  is 
called a regular D-poset (Navara and Pt~k, n.d.). 

Definition 3.2. A structure (P, <,  • 8 ,  ~ ,  0, 1) is called a difference 
orthoalgebra (abbreviated D-orthoalgebra, or DOA) if the following condi- 
tions are satisfied: 

(doai) (P, -<, • 8 ,  0, 1) is a D-orthoposet.  
(doaii) (P, ~ ,  0, 1) is an orthoalgebra. 

(doaiii) For  every a, b~P with a -< 1 8 b :  a ~ b  = 1 8 [ ( 1  8 a )  8 b ] .  

In this case we say that the orthoalgebra (P, ~ ,  0, 1) and D-orthoposet  
(P, < ,  • 8 ,  0, 1) belong to one another. 

Proposition 3.3. Let P be a set and 0, 1 be two distinguished elements 
of  P. Then every D-orthoposet structure on P uniquely determines an 
orthoalgebraic structure on P, and every orthoalgebraic structure on P 
uniquely determines a D-orthoposet  structure on P, such that they belong 
to one another; i.e., they both uniquely determine the same D-orthoalgebraic 
structure. 

Proof. (1) Let (P, <,  • 8 ,  0, 1) be a D-orthoposet.  For  every a, b~P 
with a < 1 8 b we define a ~ b = 1 8 [( 1 8 a) 8 b]. Then in view of  Lemma 
3.1, (P, @, 0, 1) is an orthoalgebra (Navara and Ptfik, n.d., Theorem 1.11). 

(2) Let (P, @, 0, 1) be an orthoalgebra. We define for any a, b eP: 
a < b iff there exists c ~ P with b = a ~ c and then we put b 8 a = c. 

Moreover, we put a J- = 1 8 a  for every a~P. 
Then (P, <,  J-, 8 ,  0, 1) is a D-poset (Navara and Ptfik, n.d., Proposi- 

tion 1.9) and in view of  Lemma 3.1 it is a D-orthoposet. Further, let a, b ~P  
with a < 1 8 b. Then 

1 8 b = a ~ [( 1 8 b) 8 a] by the definition of  operation 8 

It follows that 

1 = b O ( 1  8 b )  = b ~ { a ~ [ ( 1  8 b )  8 a ] }  = (b ~ a )  ~[ (1  8 b )  8 a ]  

Hence ( 1 8 b) 8 a = (b ~ a) • and thus b ~ a = 1 8 [( 1G b) 8 a]. 
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Proposition 3.4. Let (P, <,  • 8 ,  ~ ,  0, 1) be a D-orthoalgebra. Then 
the following conditions are equivalent: 

(i) (P, -<, 1, 0, 1) is an orthomodular poset. 
(ii) The supremum a v b exists in P for every a, b e P  with a -< b z. 

Proof (i) =~ (ii): This is obvious. 
(ii) =~ (i): Suppose that a, beP, a <- b. Then a -< (b• • implies that 

a v b • exists in P and hence the infimum a • ^ b exists in P. Moreover, we 
h a v e b G a < - b a n d  

a < b < - I  ~ ( l ~ 3 a ) O ( 1 O b ) = b O a  ~ b O a ~ l G a = a  ~ 

We obtain b O a  < a • ^ b. It follows that a ~ ^ b = 0 implies b O a  = 0 and 
hence b = a. We obtain that (P, < ,  J-, 0, 1) is orthomodular (Kalmbach, 
1983, p. 27). 

Every orthomodular poset (P, <,  J-, 0, 1) becomes a D-orthoposet 
putting b ~ a = a z ^ b for every a, b e P with a -< b. The following corol- 
lary of  Proposition 3.3 follows: 

Corollary 3.5. Every finitely orthocomplete D-orthoalgebra (i.e., in 
which the supremum of every two orthogonal elements exists) is uniquely 
determined by an orthomodular poset. 

Example 3.6. The poset in Fig. 1 does not become an orthoalgebra 
(D-orthoalgebra), because there is no difference operation O on P with 
property 1 O x = x• 

Example 3. 7. The poset P in Fig. 2 does not become an orthoalgebra 
(D-orthoalgebra), because it is not an orthoposet. 

Corollary 3.8. A MacNeille completion MC(P) of a D-orthoposet 
(D-orthoalgebra) P is again a D-orthoposet (D-orthoalgebra), operations 
on which extend those of P, if and only if MC(P) is an orthomodular 
lattice. 

Remark 3.9. For a necessary and sufficient condition for orthoposet 
(P, < ,  • 0, 1) to have orthomodular MacNeille completion see Rie6anovfi 
(n.d.). 

4. C O M P L E T I O N S  OF D - P O S E T S  A N D  D - O R T H O A L G E B R A S  

It is well known that any partially ordered set P can be embedded into 
its MacNeiUe completion P (or completion by cuts). It  has been shown 
(Schmidt, 1956) that any complete lattice /~ into which P can be 
supremum-densely and infimum-densely embedded (i.e., every element of  
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is the supremum of elements of the image of P and the infimum of elements 
of the image of P) is isomorphic to the MacNeille completion of P. For an 
orthoposet P the MacNeille completion is always a complete ortholattice 
(Kalmbach, 1983, pp. 255-256) in which orthocomplementation extends 
that of P. 

In this part we show that the MacNeille completion of a D-poset P 
(D-orthoalgebra P) need not be again a D-poset (D-orthoalgebra) on 
which the operations extend that of P. 

Example 4.1 (Suggested by J. Harding). As we have showed in 
Example 2.5 for the poset P of Fig. 2, there exist four difference operations. 
The MacNeille completion of that poset P is a lattice in Fig. 3. But on this 
lattice there is not any difference operation, as we showed in Example 2.4. 
Hence: The MacNeille completion of  any D-poset (P, <, 8i ,  0, 1), 
i = 1, 2, 3, 4, from Example 2.5 is not again a D-poset. 

Example 4.2. Consider the orthocomplete orthomodular poset 
(P, <, • 0, 1) by Fig. 4, where to be understood we identify both atoms a 
(and hence both coatoms a• 

Denote by MC(P) the MacNeille completion of that orthomodular 
poset P. Let (P, <,  • 8 ,  0), 0, 1) be a D-orthoalgebraic structure on P 
uniquely determined by the orthomodular poset in Fig. 4. Since MC(P) is 
a complete ortholattice which is not orthomodular (Kalmbach, 1983, p. 
259; Rie~anovh, n.d.), neither the operation 8 nor the operation @ can be 
extended to MC(P) (see Proposition 3.4). As M. Navara has proved 
(unpublished), this orthomodular poset cannot be embedded into any 
complete orthomodular lattice. Thus, in view of Corollary 3.5, that D-or- 
thoalgebra (P, -<, • 8 ,  ~ ,  0, 1) cannot be embedded into any complete 
D-orthoalgebra. 

�9 " ~ " . . . .  J a  

Fig. 4 
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